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The estimation of the probability of missiles falling within speci-
fied areas is important in their development and application. For
certain applications the accurate evaluation of this probability is
required.

This report presents some techniques for accurately evaluating
from tables of the circular coverage function, the probability of a
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The work was performed under Bureau of Naval Weapons Task
Assignment RUTO-3H 133/216 1/F008-03-001, during Fiscal Year 1961.

Review of this report for technical adequacy was performed by
D. L. Elliott and R. E. Wagner of this Station.

D. J. WILCOX, Head

Underwater Ordnance
Department

Released under
the authority of:

WM. B. McLEAN
Technical Director

NOTS Technical Publication 2766
NAVWEPS Report 778Z

Published by ..................... Underwater Ordnance Department
M anuscript .......................................... 807/M S- 138
Collation ......................... Cover, 10 leaves, abstract cards
First printing ................................. 115 numbered copies
Security classification ............................. UNCLASSIFIED

ii



1 Allegany Ballistics Laboratory, Cumberland, Md. (Librarian)
1 Applied Physics Laboratory, University of Washington, Seattle
1 Convair Scientific Research Laboratory, San Diego (A. L. Berlad)
1 Electric Boat Division, General Dynamics Corporation, Groton,

Conn. (Mr. Atkinson)
1 General Electric Company, Defense Electronics Division,

Pittsfield, Mass. (K. I. Igler)
1 Hudson Laboratories, Columbia University, Dobbs Ferry, N. Y.
1 Ordnance Research Laboratory, Pennsylvania State University

(Development Contract Administrator)
1 Scripps Institution of Oceanography, University of California,

La Jolla (Document Control)
1 The Rand Corporation, Santa Monica, Calif.
1 Westinghouse Research Laboratories, Pittsburgh (Arthur Nelkin)
1 Woods Hole Oceanographic Institution, Woods Hole, Mass.

NOTS CL 70$ 62I1 Is



NAVWEPS REPORT 7782

CONTENTS

Introduction .................................................. 1

D iscussion .................................................. 1
Circular Coverage Function .................................. 2
Integral of the Circular Gaussian Distribution Over a

Centered Ellipse .......................................... 3
Integral of the Elliptic Gaussian Distribution Over a

Centered Circle ........................................ 7
Integral of the Elliptic Gaussian Distribution Over a

Centered Ellipse .......................................... 9
Integral of the Elliptic Gaussian Distribution Over a

Centered Randomly Oriented Ellipse ........................ 9

Conclusions .................................................. 13

Appendix: Probability Density of a Randomly Oriented Elliptic
Gaussian Distribution ................................ 14

N om enclature ................................................ 16

R eferences .................................................. 17

iii



NAVWEPS REPORT 7782

INTRODUCTION

The estimation of the probability of a missile falling within a speci-
fied area under various assumed conditions has been the subject of
study for many years. In general, it is assumed that the range and
lateral deviations of the missile are normally distributed (i. e. ,
Gaussian-distributed).

Simple cases are those of a rectangular target area with sides par-
allel to range and lateral dispersions (assumed uncorrelated), and a
circular target area centered with respect to a circular Gaussian dis-
tribution. Recently, other cases such as the estimation of the proba-
bility of a missile falling within a circular target area where the dis-
tribution in missile deviations is offset, circular or elliptical Gaussian,
has received study, especially by the Rand Corp. , Santa Monica,
California (Ref. 1 to 12).

In general, two methods are available for estimating the probability
of a missile hit. One method is graphical and consists in plotting the
suitably transformed target area on circular probability paper and
summing the probability values of the elements within the target area.
The other method consists in evaluating the probability from tabulated
functions. The relative convenience of the methods will depend upon
the nature of the problem involved. However, it should be pointed out
that summing probability elements can be fatiguing and the probability
of a missile hit can be evaluated more accurately from tabulated func-
tions. In many cases such accuracy is not required, but in cases
where the number of missiles thrown is large, and the individual proba-
bilities of success are small, the accuracy of tabulated functions may
be required.

DISCUSSION

In this report some techniques involving the circular coverage
function are discussed for estimating the probability of a hit in the use
of missiles against a target under the following assumptions:

1. The missile range and lateral deviations are normally distributed
and known.

2. The target is a circle or an ellipse.

3. The center of the target and center of impact are coincident.

4. The orientation of the target with respect to the distribution is
known or it is random, all orientations being equally probable.
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In order to avoid unnecessary discussion of well-known familiar
transformations, reduction to standard form (I. e., normalization) will
be assumed wherever feasible.

CIRCT.LAR COVERAGE FUNCTION

The circular coverage function (Ref. 8) is the probability that amissile
will hit a circle of radius Rif it is aimed at a point a distance r fromthe
center of the circle and if it is subject to a circular Gaussian impact-
probability law of unit standard deviation. Reference 8 does not give a
derivation of this function, but it may be derived as follows.

In Fig. 1, let the center of impact be represented by the origin 0, and
let the target be represented by the circle with center C and radius R.

Without loss in generality an x, y-coordinate system with origin at 0 such
that C lies on the positive x-axis may be assumed. Then the probability
p(R, r) that the missile will hit the circle is given by

1
(1) p(R, r)= -f e['(x2 +Y2)/Zldx dyZ 2

2W (x-r) +y <R

Assuming polar coordinates t, 0 with the pole at C and the polar axis
along the positive direction of the x-axis

(2) x - r + t cos0

y t sin O

and Eq. 1 becomes

(3) p(R, r) e e [ ' (r2/z)]R e[l(t2/2)]t e( ' rt cos 0) dOdt

21T fo i

From Bessel function theory (Ref. 13)

00

(4) e(-rt co s ) = Io(rt) + 2 E (1)n In(rt) cosnO

n1 1

Substituting Eq. 4 into Eq. 3 and integrating

(5) p(R, r) = e[(r7/2)]f o R e[(t 2 /2)]Io(rt)tdt
0

Equation 5 is the circular coverage function. Certain special cases
and properties of this function should be noted.

(6) p(R. 0) = 1 - e[(R2/ ) ] Circular Gaussian probability distribution

2
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y /t

0 r R _x

FIG

, FIG. 1. Offset Circular Target.

(7) p(R, oo} = 0 Target infinitely far from center of impact

(8) _p(, r) = 0 Target of null area

(9) _p(0, r) = 1 Target of infinite area

(10) p(-ti, p) = p(c, -I) = p(-c, -3) p(a, 3)

Equations 6, 7, 8, and 10 follow directly from Eq. 5. Equation 9 may
be obtained by substituting (Ref. 13)

00 (rt)2k

(11) 10 (rt) = 2X= 2k(k' )2

in the integrand of Eq. 5 and integrating term by term.

Tables of the circular coverage function are given in Ref. 8. Ex-
tensive tables (Ref. 9) and abridged tables (Ref. 11) are available in
which the function

(12) q(a, e - e[-( aL/2)]f oo e [_(V2/2)]o(aV)VdV

is tabulated. Since from Eq. 5, 9, and 12

(13) p(R, r) = I - q(R, r)

these tables may be used to obtain p(R, r). The function q(R, r) is the
probability that the missile will not-hit the target.

INTEGRAL OF THE CIRCULAR GAUSSIAN
DISTRIBUTION OVER A CENTERED ELLIPSE

The general form of this integral is given by

(14) pa, b) e- JJ ( -xz + yI) / 21 dxdy
2w (x 2 /a 2 +y 2 /bZ)< I

3
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In what follows the elliptic semiaxes a and b are assigned their positive
values. Under the transformation

(15) x a t CoBs0
y a t sinO

Equation 14 becomes e~ 2 2ldd

(16) p(a, b) = - jZt jt(O)

where
ab

(17) t(e)=
Ta 2 si n7-0 + b2 co s 2

Integrating Eq. 16 with respect to t and substituting Eq. 17 for the upper
limit of integration

(18) p(a, b) 1- 1 2W~ [-l/2)a -b2 /(a 2 sin 0G+b cos 80)] dO

7 fT/2 e-( 1/2)a7bZ/(aZsinO+b7-cosZO) I dO
Wr 0

due to the periodicity of the integrand. Applying the transformation

b
(19) tan 0 - tan -

a 2

to Eq. 18,

1 [-(I 2 2/ 4 ] (1r Ir -b2)/4os 2abd
(20) p(a, b)=1 - W f e aL+ba +- (2cobsLJs

In order to evaluate Eq. 20, the integr and will be transformed into a
tractable form. From Bessel function theory (Ref. 13).

(2 1) e ([(a-b2)/4]cos) 10 -b) + 2 j .)nln( -ZCos nt

Now the function

(22) -=1 +2 ( 1)mzm; z I
I +z Mali

4
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is considered. Substituting

(23) I' I< l

in Eq. 22, expanding and equating real terms

1 - Lz o

(24) 2=1 + 2 i (-l)mRm cos m
1 +42 + 24 Cos mzl

Substituting
a - b

(25) - ;< I (since a and b> 0)
a+b

in Eq. 24 and clearing fractions

2ab 0 /a_ b m
(26) 1 + 2 F ( 1 )m cosm,

a 2 + b2 + (a 2 - b2 ) cos m=l \a + b

Substituting Eq. 21 and 26 for the integrand in Eq. ZO

(27) p(a,b) - e [-(a+bZ)/4]o " Io a + (-l)nngo cosntj
f o (- ( _on

rn0 l
X I +Ia-b Om m  1o tda2- -' b2 0 -b nl

S- e[-(a2+b2)/4 I° - ) 2 + aZ - b

It remains to express p(a, b) in terms of the circular coverage function.
Now the circular coverage function (Eq. 5) can be expressed in the follow-
ing forms

(28) p(R, r) = e[ - (rZ/2)] fR e[(t2/2)lo(rttdt

= 1 - e['(r2/r)]f e[(t 2 /2)lo(rt)tdt

e [-(R2 +r 2 )/21 g R n In(Rr)

nzl

* =1~~~- (R 2 +r 2 )2 o(y

5
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The latter two forms of Eq. 28 are obtained from the previous forms by
repeated integration by parts, making use of the relations (Ref. 13).

(29) I.n(t) - In(t); (n an integer)

d
- [tnIn(t)] = tnIn. l(t)
dt

d

- [t-nIn(t) = t-nIn+I(t)
dt

Now let

a- b
(30) R=

2

a+b

r z -

2

Then from Eq. 27, 28, and 30

31 p(a, b) 1 - e(a2+bZ)/4 1  a - b) + ( ab (n

(31npa b I 4 I

ja +b a -b a- -b a+b

2 2 f~ 2

From Eq. 13 and 31

ja+b a-b) /a-b a+b\
(32) pla, b) z p -

a -b a +b) ~a +b a -b~

q( 2 2! 2 2/

Therefore the probability, p(a, b), of a missile hitting the centered
elliptical target with semiaxes a and b can be computed from available
tables (Ref. 8, 9, and 11). It will be noted that if a = b = R. the target
is a circle and Eq. 31 and 32 reduce to Eq. 6, the circular probability
distribution. From Eq. 10 and 13 it is obvious that the absolute value
of a - b may be used in Eq. 31 and 32.

From a geometrical point of view, the integral, p(a, b), of the
Gaussian distribution over a centered ellipse is equal to the difference

6

U
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of the integrals of the distribution over two associated offset circles as
given by Eq. 32. A. centered ellipse wifh associated offset circles A
and B is shown plotted on a circular probability grid in Fig. 2. By
Eq. 32, the integral of the distribution over the ellipse is equal to the
integral of the distribution over the lune bounded by the offset circles.

A comparison of the values of p(a, b) for the ellipse in Fig. 2, ob-
tained by interpolation from the tables of Ref. 8 and by count of proba-
bility elements, is of interest. The semiaxes of the ellipse are a= 1.690
and bo 0.845 standard deviations, respectively. Then (a + b)/2= 1.268
and (a - b)/2 = 0.423. The values obtained by both methods are given
in Table 1. The results show good agreement.

TABLE 1. Evaluation of the Integral of the
Circular Gaussian Distribution Over a
Centered Ellipse From Tables and by

Probability Element Count

Value of the Integral

Area of Integration From Tables of By Probability

Ref. 8 Element Count

Offset circle A 0.5206 0.520
p(l. 2 6 8 , 0.423)

Offset circle B 0.0397 0.041
p(O. 4 2 3 , 1.268)

Lune 0.4809 0.479
p(l.2 6 8 , 0.423)-
p(O. 4 2 3 , 1.268)

Ellipse 0 . 4 8 0 9 a 0.478
p(l. 6 90, 0.845)

aIntegral over ellipse equal to that over lune by
Eq. 32.

INTEGRAL OF THE ELLIPTIC GAUSSIAN DISTRIBUTION
OVER A CENTERED CIRCLE

The general form of this integral is given by

_ I fz f  e[.(x2/2cr2 + y2/20-)]dxy

(33) p(R, orx, a-y) = Y ff e[ x Y2dy
xz

Under the transformation

7
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LHA aAI1 0LIKAS P408"LITY

LOWm I NA M 14 NOMI TIAS MIT

FIG. 2. Centered Ellipse With Associated Offset Circles Plotted on a

Circular Gaussian Distribution Grid.

8
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(34) x = (xU
y= OyV

Eq. 33 becomes

5 f f el-(u2+v2 )/2 1 dudv(35) p(R x,a y)rn + =(2a 12<

2w (uZ/aZ tfZ/bZ)5

where

(36) a = R/rx
b =R/y

Eq. 35 is similar to Eq. 14 and may be evaluated in the same way. Hence

(37) p(R, Tx, 9y) =(p  +-_[( - +

INTEGRAL OF THE ELLIPTIC GAUSSIAN DISTRIBUTION

OVER A CENTERED ELLIPSE

General forms of this integral are given by

(38) p(a, b, p, ax , oy)

* J eflL1/2( 'J)]'x?-T ZPxy/qxoy~yj )dx dy
2wrGxary4F[ Z (x2/a2+yW~)< 1

and

I ff _ x2/202+"2/2u2)
(39) p(a, b, r, cry ) ff [/r Y)dxdy

where the domain of integration is defined by

(40) Ax 2 + Bxy + Cy 2 < D; B 2 - 4AC < 0

These general forms can always be transformed into Eq. 14 by suitable
linear transformations. The transformations are available in standard
texts in analytical geometry and are not discussed here.

INTEGRAL OF THE ELLIPTIC GAUSSIAN DISTRIBUTION

* sOVER A CENTERED RANDOMLY ORIENTED ELLIPSE

Returning to Eq. 33, p(R, ax, o-y) is the probability for given 0 x
and 0y that a missile will hit within a distance, R, of the center of

9
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impact. Hence p(R, 0 x, oy) is the probability distribution in R. If the
elliptic distribution has random orientation, all orientations being
equally probable, the distribution with respect to R remains the same,
but a circular non-Gaussian distribution in hits is obtained. Such a
distribution would obtain for a randomly oriented line of delivery with
fixed center of impact, or for a rotating target plane where the center
of rotation and center of impact are coincident and all orientations of
the target plane with respect to any given hit are equally probable.

It is of interest to determine the probability density as a function of
the distance, R, from the center of impact. This may be done by ex-
pressing p(R, x, oy) in Eq. 37 as a function of R by means of Eq. 5
and 36, differentiating with respect to R and making use of Eq. 29.
After some tedious manipulation

dp 1 [(l/4)(l/cx+l/ry)R2]II z( 1)RI
(41) -e '-- R-R

dR xay

is obtained. Ani alternative method of deriving Eq. 41 which will be
useful in further developments is given in the Appendix.

If, as previously discussed, the elliptic distribution has random
orientation, all orientations being equally probable, the probability
density with respect to R as given by Eq. 41 remains the same, but
becomes uniformly distributed over the area 2wRdR of arbitrary an-
nular elements of radius R. Then the probability density at the point
(R, e) or (x, y) is given by

1 dp 1 [_(14)(lIz2+lIu)R2l /1 1 ]
(42)--- _e x oil 2 2-R 2 ]

ZirRdR 2irxr L4o ci T

1 ~[(14)(VI2+ VT)(x 2+y2)J 1 1(xy)(x y4 - X + ZI*2x y y

Steve Gaspar, formerly of this Station, in an internal memoran-
dum dated 30 March 1959 also derived the above probability density
function. His derivation differs from those given in this report in that
he derives the probability density functidn directly by considering the
probability density at an arbitrary point x, y on the basis of a centered
but randomly oriented elliptic Gaussian distribution.

10
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If a centered elliptic target is allowed to have any orientation with re-

spect to an elliptic Gaussian distribution where all orientations of the target

are equally probable, the probability of a missile hitting the target under

these assumed conditions would be the same as if the orientation of the tar-

get were fixed and the orientation of the distribution with respect to the tar-

get were random, all orientations being equally probable. The probability

density of missile dispersions under this condition is given by Eq. 42. Then

the probability of a missile hitting the target is given by

(43)

p(a, b, Tx, Gy)

- 1 212S,2 e[(V4)(/r,2+ Vr2)(x 2 +y 2 )] il ) 2

2ir~x~y (x /a +y2/b)S 4 rT y

- ~2nt(0) [le[/4)(1//o-4+l/ -)t2loll I 4)tZtJ

2ZxO y 0 

4o

where the second form of Eq. 43 is obtained by means of the transformation

of Eq. 15 and t(O) is given by Eq. 17. If in Eq. 56 of the Appendix, R is re-

placed by t(O)

( 4 4 ) t ( e ) 1 _ + I t (( I P t ( O ) . .I ,  t ( e ) 1 u + 1

7xy Ty z -' \rX , Ml t(O) eV- Ii llx l+ 1l tlo /4,'72 t_ 1. lltdt

is obtained. Substituting Eq. 44 in Eq. 43,

(45) p(a, b, o-x , (ry)

1S fir t(e 1 +-I t(() 'I1 - It<(e I 1 t() l +1= -- - \ - _y - \ - /J -- - ' - -' '

2r r' x
2 W/ [t() t() I 1 t(:) 1 1 ) (I+ I)Jde

fo r 2 _(rX 20. x -x @oy -

due to the periodicity of the integrand.

Equation 45 gives the probability for given wx and oy of a missile hit on

an elliptical target of semi-axes a and b ifcenter of target and center of

impact were coincident but the orientation of the target with respect to the

distribution were random, all orientations being equally probable. Such a i
I
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probability would obtain for a missile hitting a rotating elliptical target
where the center of the target, center of rotation, and center of impact
were coincident and all orientations of the target with respect to any
given hit were equally probable. Equation 45 might find application,
for instance, in evaluating the probability of a hit with a depth charge
on a submarine (approximated by an ellipse) whose location was known
but orientation unknown. Computation of the probability of a hit where
for fixed line of delivery the lateral and range deviations are correlated
would involve a preliminary rotational transformation of coordinates to
present the distribution in terms of uncorrelated variables. Several
' rticular cases of Eq. 45 should be noted. If the target is a circle,
then a = b = R, t(O) = R and Eq. 45 reduces to Eq. 37, the probability
that the missile will hit within a distance R of the center of impact as
would be expected. If Tx = oy = a, say, Eq. 45 becomes

(46) pa, b, 1 -) R , 0 -p20

M or , -(O

12= I- j e

1 2 1 -e[.(l/2)a2 b 2 /(a 2 sin2 +b2cos 20) ]do

2w 0

1 -IIfo 27rl (/2) (a/a- 2 (b/r) 2/[a/c)2sin20+(4/0r)2cos2o 11do

27r

where substitutions in the integrand- are made from Eq. 6 and 8. The
last form of Eq. 46 is similar to that of Eq. 18. Proceeding in the
same manner, Eq. 45 reduces to Eq. 32, the probability of the missile
hitting a centered elliptical target assuming circular Gaussian distri-
bution. This is consistent, for with this distribution, orientation of
the target and/or distrigution becomes immaterial. Finally, if
T = Ty = T and a = b = R, Eq. 45 reduces to Eq. 6, the probability of
the missile hitting a circular target assuming circular Gaussian dis-
tribution.

Equation 45 may be evaluated by numerical integration using tabu-
lated values of the circular coverage function and suitable increments
of 0. If Eq. 45 becomes of sufficient importance to merit tabulation,
it may be non-dimensionalized as follows. Let

(47) k = b/a

(48) T

12j
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(49) m a a/0-y

Then Eq. 45 becomes

2 '/2 [ k(+ 1)m k(I - l)m
(50) p(a, b, x, ay) "- __(0) , (0) 2i• ,o 2 2

-P k([ - l)m k(I+ l)mj

where
1

(51) 0 (/sin 0 + k 2 cos-0

Equation 51 could be tabulated for a range of values of k, 1, and m.

CONCLUSIONS

The integral of the circular Gaussian distribution over a centered
ellipse may be directly evaluated from tables of the circular coverage
function. The integral of the elliptic Gaussian distribution over a
centered circle may be readily evaluated from tables of the circular
coverage function. The integral oL the elliptic Gaussian distribution
over a centered ellipse may be readily evaluated from tables of the
circular Gaussian distribution if the axes of the ellipse are parallel to
the axes of the elliptic equi-probability contours. If the axes of the
ellipse are inclined, evaluation can still be made after a preliminary
transformation which may be laborious. Finally the probable value of
the integral of the elliptic Gaussian distribution over a centered but
randomly oriented ellipse where all orientations are equally probable
may be evaluated by numerical integration of an integral involving the
circular coverage function.

13
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Appendix

PROBABILITY DENSITY OF A RANDOMLY ORIENTED-
ELLIPTIC GAUSSIAN DISTRIBUTION

The probability density of Eq. 38 may also be derived from Eq. 37 by the
following method. We first transform Eq. 37 by means of Eq. 15. Then

(52) p(R, ox, oy)

[R_ 1 ) + 1 R_ 1 1 [R{ 1 1~y R I I )IQ- -o cry (rx Ty x a-y

- ~ [-(14)(l/:-x+1/-)t I t f V(V4)(VI/Z i/;) 2 'Cos2O1d~dt

2rroxo-y 0of~

Substituting

(53) 0= zo

into Eq. 52

(54) p(R, ox, oay)

= £J I-+ I R_ 1, R 1 1 + 1

2o x  a xy a Oyyt o
- 4 byRe[ (/) (V+ 7) t2R. 2' e[-(4)( 2 [_yZA2 2oV ] d[ dt

41raxo- f y f2,rex0 o ;d

1 fR[(V4)(VZ+V2)t 2] te2 22)tcos

-~~ tO~ ee X tf _[(4)(/ox Vor;1 CO~dtdtwcrxary 0f

due to the periodicity of the integrand. From Bessel function theory (Ref. 13)

(55) e [( /x' )t Cos;]= I - 142

4~ 2Z

+ 2 4- t Cosn;

14
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Substituting Eq. 55 in the integrand of Eq. 54 and integrating

(56 pRr.wy~ 4 1+ R I _ I )I FR 1- I RIl1

2 T G' 2 \OX Ty J 2 \TX Ty/'2 aX ..

* r 1 sR e[+(]/41(T rI/ 1TY) t Iot()2 d

T xo y 04

Differentiating Eq. 56 with respect to R, we obtain the probability den-
sity as a function of distance from the center of impact. That is,

dp1r'l/4Xl/'2+/' lRZ1 [ 1 1 2
(57) e - - RIR

dR ox 4 x y'

From the middle,'member of Eq. 56, it follows that p(oo, ax, (ry) o 1.
This can also be shown directly from the right hand member, making
use of the definite integral (Ref. 13)

0

(58) f e(GP)Io(P)dP a > 1Jo 7 7

is
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NOMENCLATURE

a, b Axes of elliptic target area or area of integration.

In(t) Modified Bessel function of the first kind of order n.

p Probability that a missile will hit the target.

p(R, r) Circular coverage function. The probability that a missile
will hit a circle of radius R if it is aimed at a point a distance
r from the center of the circle and if it is subject to a circular
Gaussian impact- probability distribution of unit standard
deviation.

q(R, r) 1 - p(R, r). The probability that a missile -ill not hit a circle
of ridius R if it is aimed at a point a distance r from the center
of the circle and if it is subject to a circular Gaussian impact-
probability distribution of unit standard deviation.

r Distance of center of target from center of impact.

R Radius of target.

t Radius vector coordinate.

x Lateral deviation of missile from center of impact.

y Range deviation of missile from center of impact.

z x + iy where i = I. Complex variable.

p Coefficient of correlation between lateral and range deviations.

o Lateral and range standard deviations (used when ,x = ary).

cx Lateral standard deviation.

c y Range standard deviation.

0 Polar angle coordinate.

16
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